XCSF  1.4.7
XCSF learning classifier system
XCSF Struct Reference

XCSF data structure. More...

#include <xcsf.h>

Collaboration diagram for XCSF:
[legend]

Data Fields

struct Set pset
 Population set. More...
 
struct Set prev_pset
 Previously stored population set. More...
 
struct Set mset
 Match set. More...
 
struct Set aset
 Action set. More...
 
struct Set kset
 Kill set. More...
 
struct Set prev_aset
 Previous action set. More...
 
struct ArgsActact
 Action parameters. More...
 
struct ArgsCondcond
 Condition parameters. More...
 
struct ArgsPredpred
 Prediction parameters. More...
 
struct ArgsEAea
 EA parameters. More...
 
struct EnvVtbl const * env_vptr
 Functions acting on environments. More...
 
void * env
 Environment structure (for built-in problems) More...
 
double error
 Average system error. More...
 
double mset_size
 Average match set size. More...
 
double aset_size
 Average action set size. More...
 
double mfrac
 Generalisation measure. More...
 
double prev_reward
 Reward from previous step in a multi-step trial. More...
 
double prev_pred
 Payoff prediction made on the previous step. More...
 
double * pa
 Prediction array (stores fitness weighted predictions) More...
 
double * nr
 Prediction array (stores total fitness) More...
 
double * prev_state
 Environment state on the previous step. More...
 
double * cover
 Values to return for a prediction instead of covering. More...
 
int time
 Current number of EA executions. More...
 
int pa_size
 Prediction array size. More...
 
int x_dim
 Number of problem input variables. More...
 
int y_dim
 Number of problem output variables. More...
 
int n_actions
 Number of class labels / actions. More...
 
bool explore
 Whether the system is currently exploring or exploiting. More...
 
double(* loss_ptr )(const struct XCSF *, const double *, const double *)
 Error function. More...
 
double GAMMA
 Discount factor for multi-step reward. More...
 
double P_EXPLORE
 Probability of exploring vs. exploiting. More...
 
double ALPHA
 Linear coefficient used to calculate classifier accuracy. More...
 
double BETA
 Learning rate for updating error, fitness, and set size. More...
 
double DELTA
 Fraction of population to increase deletion vote. More...
 
double E0
 Target error under which classifier accuracy is set to 1. More...
 
double INIT_ERROR
 Initial classifier error value. More...
 
double INIT_FITNESS
 Initial classifier fitness value. More...
 
double NU
 Exponent used in calculating classifier accuracy. More...
 
double HUBER_DELTA
 Delta parameter for Huber loss calculation. More...
 
int OMP_NUM_THREADS
 Number of threads for parallel processing. More...
 
int MAX_TRIALS
 Number of problem instances to run in one experiment. More...
 
int PERF_TRIALS
 Number of problem instances to avg performance output. More...
 
int POP_SIZE
 Maximum number of micro-classifiers in the population. More...
 
int LOSS_FUNC
 Which loss/error function to apply. More...
 
int TELETRANSPORTATION
 Maximum steps for a multi-step problem. More...
 
int THETA_DEL
 Min experience before fitness used during deletion. More...
 
int M_PROBATION
 Trials since creation a cl must match at least 1 input. More...
 
int THETA_SUB
 Minimum experience of a classifier to become a subsumer. More...
 
int RANDOM_STATE
 Random number seed. More...
 
bool POP_INIT
 Pop initially empty or filled with random conditions. More...
 
bool SET_SUBSUMPTION
 Whether to perform match set subsumption. More...
 
bool STATEFUL
 Whether classifiers should retain state across trials. More...
 
bool COMPACTION
 if sys err < E0: largest of 2 roulette spins deleted More...
 
char * population_file
 Name of a JSON file containing an initial pop. More...
 

Detailed Description

XCSF data structure.

Definition at line 85 of file xcsf.h.

Field Documentation

◆ act

struct ArgsAct* XCSF::act

Action parameters.

Definition at line 92 of file xcsf.h.

◆ ALPHA

double XCSF::ALPHA

Linear coefficient used to calculate classifier accuracy.

Definition at line 118 of file xcsf.h.

◆ aset

struct Set XCSF::aset

Action set.

Definition at line 79 of file xcsf.h.

◆ aset_size

double XCSF::aset_size

Average action set size.

Definition at line 100 of file xcsf.h.

Referenced by XCS::get_aset_size().

◆ BETA

double XCSF::BETA

Learning rate for updating error, fitness, and set size.

Definition at line 119 of file xcsf.h.

◆ COMPACTION

bool XCSF::COMPACTION

if sys err < E0: largest of 2 roulette spins deleted

Definition at line 139 of file xcsf.h.

◆ cond

struct ArgsCond* XCSF::cond

Condition parameters.

Definition at line 93 of file xcsf.h.

◆ cover

double* XCSF::cover

Values to return for a prediction instead of covering.

Definition at line 107 of file xcsf.h.

Referenced by XCS::fit(), XCS::load_validation_data(), XCS::predict(), XCS::score(), and XCS::set_cover().

◆ DELTA

double XCSF::DELTA

Fraction of population to increase deletion vote.

Definition at line 120 of file xcsf.h.

◆ E0

double XCSF::E0

Target error under which classifier accuracy is set to 1.

Definition at line 121 of file xcsf.h.

◆ ea

struct ArgsEA* XCSF::ea

EA parameters.

Definition at line 95 of file xcsf.h.

◆ env

void* XCSF::env

Environment structure (for built-in problems)

Definition at line 97 of file xcsf.h.

◆ env_vptr

struct EnvVtbl const* XCSF::env_vptr

Functions acting on environments.

Definition at line 96 of file xcsf.h.

◆ error

double XCSF::error

Average system error.

Definition at line 98 of file xcsf.h.

Referenced by XCS::error().

◆ explore

bool XCSF::explore

Whether the system is currently exploring or exploiting.

Definition at line 113 of file xcsf.h.

◆ GAMMA

double XCSF::GAMMA

Discount factor for multi-step reward.

Definition at line 116 of file xcsf.h.

◆ HUBER_DELTA

double XCSF::HUBER_DELTA

Delta parameter for Huber loss calculation.

Definition at line 125 of file xcsf.h.

◆ INIT_ERROR

double XCSF::INIT_ERROR

Initial classifier error value.

Definition at line 122 of file xcsf.h.

◆ INIT_FITNESS

double XCSF::INIT_FITNESS

Initial classifier fitness value.

Definition at line 123 of file xcsf.h.

◆ kset

struct Set XCSF::kset

Kill set.

Definition at line 79 of file xcsf.h.

◆ LOSS_FUNC

int XCSF::LOSS_FUNC

Which loss/error function to apply.

Definition at line 130 of file xcsf.h.

◆ loss_ptr

double(* XCSF::loss_ptr) (const struct XCSF *, const double *, const double *)

Error function.

Definition at line 114 of file xcsf.h.

◆ M_PROBATION

int XCSF::M_PROBATION

Trials since creation a cl must match at least 1 input.

Definition at line 133 of file xcsf.h.

◆ MAX_TRIALS

int XCSF::MAX_TRIALS

Number of problem instances to run in one experiment.

Definition at line 127 of file xcsf.h.

Referenced by XCS::fit().

◆ mfrac

double XCSF::mfrac

Generalisation measure.

Definition at line 101 of file xcsf.h.

Referenced by XCS::get_mfrac(), and XCS::update_metrics().

◆ mset

struct Set XCSF::mset

Match set.

Definition at line 79 of file xcsf.h.

◆ mset_size

double XCSF::mset_size

Average match set size.

Definition at line 99 of file xcsf.h.

Referenced by XCS::get_mset_size(), and XCS::update_metrics().

◆ n_actions

int XCSF::n_actions

Number of class labels / actions.

Definition at line 112 of file xcsf.h.

Referenced by XCS::fit().

◆ nr

double* XCSF::nr

Prediction array (stores total fitness)

Definition at line 105 of file xcsf.h.

◆ NU

double XCSF::NU

Exponent used in calculating classifier accuracy.

Definition at line 124 of file xcsf.h.

◆ OMP_NUM_THREADS

int XCSF::OMP_NUM_THREADS

Number of threads for parallel processing.

Definition at line 126 of file xcsf.h.

◆ P_EXPLORE

double XCSF::P_EXPLORE

Probability of exploring vs. exploiting.

Definition at line 117 of file xcsf.h.

◆ pa

double* XCSF::pa

Prediction array (stores fitness weighted predictions)

Definition at line 104 of file xcsf.h.

◆ pa_size

int XCSF::pa_size

Prediction array size.

Definition at line 109 of file xcsf.h.

Referenced by XCS::load_validation_data(), XCS::predict(), and XCS::set_cover().

◆ PERF_TRIALS

int XCSF::PERF_TRIALS

Number of problem instances to avg performance output.

Definition at line 128 of file xcsf.h.

Referenced by XCS::fit().

◆ POP_INIT

bool XCSF::POP_INIT

Pop initially empty or filled with random conditions.

Definition at line 136 of file xcsf.h.

◆ POP_SIZE

int XCSF::POP_SIZE

Maximum number of micro-classifiers in the population.

Definition at line 129 of file xcsf.h.

◆ population_file

char* XCSF::population_file

Name of a JSON file containing an initial pop.

Definition at line 140 of file xcsf.h.

◆ pred

struct ArgsPred* XCSF::pred

Prediction parameters.

Definition at line 94 of file xcsf.h.

◆ prev_aset

struct Set XCSF::prev_aset

Previous action set.

Definition at line 79 of file xcsf.h.

◆ prev_pred

double XCSF::prev_pred

Payoff prediction made on the previous step.

Definition at line 103 of file xcsf.h.

◆ prev_pset

struct Set XCSF::prev_pset

Previously stored population set.

Definition at line 79 of file xcsf.h.

◆ prev_reward

double XCSF::prev_reward

Reward from previous step in a multi-step trial.

Definition at line 102 of file xcsf.h.

◆ prev_state

double* XCSF::prev_state

Environment state on the previous step.

Definition at line 106 of file xcsf.h.

◆ pset

◆ RANDOM_STATE

int XCSF::RANDOM_STATE

Random number seed.

Definition at line 135 of file xcsf.h.

◆ SET_SUBSUMPTION

bool XCSF::SET_SUBSUMPTION

Whether to perform match set subsumption.

Definition at line 137 of file xcsf.h.

◆ STATEFUL

bool XCSF::STATEFUL

Whether classifiers should retain state across trials.

Definition at line 138 of file xcsf.h.

◆ TELETRANSPORTATION

int XCSF::TELETRANSPORTATION

Maximum steps for a multi-step problem.

Definition at line 131 of file xcsf.h.

◆ THETA_DEL

int XCSF::THETA_DEL

Min experience before fitness used during deletion.

Definition at line 132 of file xcsf.h.

◆ THETA_SUB

int XCSF::THETA_SUB

Minimum experience of a classifier to become a subsumer.

Definition at line 134 of file xcsf.h.

◆ time

int XCSF::time

Current number of EA executions.

Definition at line 108 of file xcsf.h.

Referenced by XCS::get_time().

◆ x_dim

int XCSF::x_dim

Number of problem input variables.

Definition at line 110 of file xcsf.h.

Referenced by XCS::decision(), XCS::fit(), XCS::load_input(), and XCS::predict().

◆ y_dim

int XCSF::y_dim

Number of problem output variables.

Definition at line 111 of file xcsf.h.

Referenced by XCS::get_cover(), and XCS::load_input().


The documentation for this struct was generated from the following file: