XCSF 1.4.8
XCSF learning classifier system
Loading...
Searching...
No Matches
neural_layer_connected.c
Go to the documentation of this file.
1/*
2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation, either version 3 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
14 */
15
25#include "blas.h"
26#include "neural_activations.h"
27#include "sam.h"
28#include "utils.h"
29
30#define N_MU (6)
31
43
48static void
50{
53 l->state = calloc(l->n_outputs, sizeof(double));
54 l->output = calloc(l->n_outputs, sizeof(double));
55 l->biases = malloc(sizeof(double) * l->n_outputs);
56 l->bias_updates = calloc(l->n_outputs, sizeof(double));
57 l->delta = calloc(l->n_outputs, sizeof(double));
58 l->weight_updates = calloc(l->n_weights, sizeof(double));
59 l->weight_active = malloc(sizeof(bool) * l->n_weights);
60 l->weights = malloc(sizeof(double) * l->n_weights);
61 l->mu = malloc(sizeof(double) * N_MU);
62}
63
69void
70neural_layer_connected_init(struct Layer *l, const struct ArgsLayer *args)
71{
72 l->options = layer_args_opt(args);
73 l->function = args->function;
74 l->n_inputs = args->n_inputs;
75 l->n_outputs = args->n_init;
76 l->max_outputs = args->n_max;
77 l->out_w = l->n_outputs;
78 l->out_h = 1;
79 l->out_c = 1;
80 l->n_weights = l->n_inputs * l->n_outputs;
81 l->n_biases = l->n_outputs;
82 l->n_active = l->n_weights;
83 l->eta_max = args->eta;
84 l->eta_min = args->eta_min;
85 l->momentum = args->momentum;
87 l->decay = args->decay;
90 for (int i = 0; i < l->n_weights; ++i) {
92 l->weight_active[i] = true;
93 }
94 memset(l->biases, 0, sizeof(double) * l->n_biases);
95 sam_init(l->mu, N_MU, MU_TYPE);
96}
97
102void
104{
105 free(l->state);
106 free(l->output);
107 free(l->biases);
108 free(l->bias_updates);
109 free(l->delta);
110 free(l->weight_updates);
111 free(l->weight_active);
112 free(l->weights);
113 free(l->mu);
114}
115
121struct Layer *
123{
124 if (src->type != CONNECTED) {
125 printf("neural_layer_connected_copy(): incorrect source layer type\n");
126 exit(EXIT_FAILURE);
127 }
128 struct Layer *l = malloc(sizeof(struct Layer));
130 l->type = src->type;
131 l->layer_vptr = src->layer_vptr;
132 l->function = src->function;
133 l->n_inputs = src->n_inputs;
134 l->n_outputs = src->n_outputs;
135 l->max_outputs = src->max_outputs;
136 l->out_c = src->out_c;
137 l->out_h = src->out_h;
138 l->out_w = src->out_w;
139 l->n_weights = src->n_weights;
140 l->n_biases = src->n_biases;
141 l->options = src->options;
142 l->eta = src->eta;
143 l->eta_max = src->eta_max;
144 l->eta_min = src->eta_min;
145 l->momentum = src->momentum;
146 l->decay = src->decay;
148 l->n_active = src->n_active;
150 memcpy(l->biases, src->biases, sizeof(double) * src->n_biases);
151 memcpy(l->weights, src->weights, sizeof(double) * src->n_weights);
152 memcpy(l->weight_active, src->weight_active, sizeof(bool) * src->n_weights);
153 memcpy(l->mu, src->mu, sizeof(double) * N_MU);
154 return l;
155}
156
161void
166
173void
174neural_layer_connected_forward(const struct Layer *l, const struct Net *net,
175 const double *input)
176{
177 (void) net;
178 const int k = l->n_inputs;
179 const int n = l->n_outputs;
180 const double *a = input;
181 const double *b = l->weights;
182 double *c = l->state;
183 memcpy(l->state, l->biases, sizeof(double) * l->n_outputs);
184 blas_gemm(0, 1, 1, n, k, 1, a, k, b, k, 1, c, n);
186}
187
195void
196neural_layer_connected_backward(const struct Layer *l, const struct Net *net,
197 const double *input, double *delta)
198{
199 (void) net;
201 if (l->options & LAYER_SGD_WEIGHTS) {
202 const int m = l->n_outputs;
203 const int n = l->n_inputs;
204 const double *a = l->delta;
205 const double *b = input;
206 double *c = l->weight_updates;
207 blas_axpy(l->n_outputs, 1, l->delta, 1, l->bias_updates, 1);
208 blas_gemm(1, 0, m, n, 1, 1, a, m, b, n, 1, c, n);
209 }
210 if (delta) {
211 const int k = l->n_outputs;
212 const int n = l->n_inputs;
213 const double *a = l->delta;
214 const double *b = l->weights;
215 double *c = delta;
216 blas_gemm(0, 0, 1, n, k, 1, a, k, b, n, 1, c, n);
217 }
218}
219
224void
226{
227 if (l->options & LAYER_SGD_WEIGHTS && l->eta > 0) {
228 blas_axpy(l->n_biases, l->eta, l->bias_updates, 1, l->biases, 1);
230 if (l->decay > 0) {
231 blas_axpy(l->n_weights, -(l->decay), l->weights, 1,
232 l->weight_updates, 1);
233 }
234 blas_axpy(l->n_weights, l->eta, l->weight_updates, 1, l->weights, 1);
237 }
238}
239
245void
246neural_layer_connected_resize(struct Layer *l, const struct Layer *prev)
247{
248 const int n_weights = prev->n_outputs * l->n_outputs;
249 if (n_weights < 1 || n_weights > N_WEIGHTS_MAX) {
250 printf("neural_layer_connected: malloc() invalid resize\n");
251 layer_print(l, false);
252 exit(EXIT_FAILURE);
253 }
254 double *weights = malloc(sizeof(double) * n_weights);
255 double *weight_updates = malloc(sizeof(double) * n_weights);
256 bool *weight_active = malloc(sizeof(bool) * n_weights);
257 for (int i = 0; i < l->n_outputs; ++i) {
258 const int orig_offset = i * l->n_inputs;
259 const int offset = i * prev->n_outputs;
260 for (int j = 0; j < prev->n_outputs; ++j) {
261 if (j < l->n_inputs) {
262 weights[offset + j] = l->weights[orig_offset + j];
263 weight_updates[offset + j] = l->weight_updates[orig_offset + j];
264 weight_active[offset + j] = l->weight_active[orig_offset + j];
265 } else {
266 weights[offset + j] = rand_normal(0, WEIGHT_SD);
267 weight_updates[offset + j] = 0;
268 weight_active[offset + j] = true;
269 }
270 }
271 }
272 free(l->weights);
273 free(l->weight_updates);
274 free(l->weight_active);
275 l->weights = weights;
278 l->n_weights = n_weights;
279 l->n_inputs = prev->n_outputs;
281 if (l->options & LAYER_EVOLVE_CONNECT) {
283 }
284}
285
291bool
293{
294 sam_adapt(l->mu, N_MU, MU_TYPE);
295 bool mod = false;
296 if ((l->options & LAYER_EVOLVE_ETA) && layer_mutate_eta(l, l->mu[0])) {
297 mod = true;
298 }
299 if (l->options & LAYER_EVOLVE_NEURONS) {
300 const int n = layer_mutate_neurons(l, l->mu[1]);
301 if (n != 0) {
302 layer_add_neurons(l, n);
303 mod = true;
304 }
305 }
306 if ((l->options & LAYER_EVOLVE_CONNECT) &&
307 layer_mutate_connectivity(l, l->mu[2], l->mu[3])) {
309 mod = true;
310 }
311 if ((l->options & LAYER_EVOLVE_WEIGHTS) &&
312 layer_mutate_weights(l, l->mu[4])) {
313 mod = true;
314 }
315 if ((l->options & LAYER_EVOLVE_FUNCTIONS) &&
316 layer_mutate_functions(l, l->mu[5])) {
317 mod = true;
318 }
319 return mod;
320}
321
327double *
329{
330 return l->output;
331}
332
338void
339neural_layer_connected_print(const struct Layer *l, const bool print_weights)
340{
341 char *json_str = neural_layer_connected_json_export(l, print_weights);
342 printf("%s\n", json_str);
343 free(json_str);
344}
345
353char *
355 const bool return_weights)
356{
357 cJSON *json = cJSON_CreateObject();
358 cJSON_AddStringToObject(json, "type", "connected");
359 cJSON_AddStringToObject(json, "activation",
361 cJSON_AddNumberToObject(json, "n_inputs", l->n_inputs);
362 cJSON_AddNumberToObject(json, "n_outputs", l->n_outputs);
363 cJSON_AddNumberToObject(json, "eta", l->eta);
364 cJSON *mutation = cJSON_CreateDoubleArray(l->mu, N_MU);
365 cJSON_AddItemToObject(json, "mutation", mutation);
366 char *weights_str = layer_weight_json(l, return_weights);
367 cJSON *weights = cJSON_Parse(weights_str);
368 free(weights_str);
369 cJSON_AddItemToObject(json, "weights", weights);
370 char *string = cJSON_Print(json);
371 cJSON_Delete(json);
372 return string;
373}
374
381size_t
382neural_layer_connected_save(const struct Layer *l, FILE *fp)
383{
384 size_t s = 0;
385 s += fwrite(&l->n_inputs, sizeof(int), 1, fp);
386 s += fwrite(&l->n_outputs, sizeof(int), 1, fp);
387 s += fwrite(&l->n_biases, sizeof(int), 1, fp);
388 s += fwrite(&l->max_outputs, sizeof(int), 1, fp);
389 s += fwrite(&l->n_weights, sizeof(int), 1, fp);
390 s += fwrite(&l->options, sizeof(uint32_t), 1, fp);
391 s += fwrite(&l->function, sizeof(int), 1, fp);
392 s += fwrite(&l->max_neuron_grow, sizeof(int), 1, fp);
393 s += fwrite(&l->eta, sizeof(double), 1, fp);
394 s += fwrite(&l->eta_max, sizeof(double), 1, fp);
395 s += fwrite(&l->eta_min, sizeof(double), 1, fp);
396 s += fwrite(&l->momentum, sizeof(double), 1, fp);
397 s += fwrite(&l->decay, sizeof(double), 1, fp);
398 s += fwrite(&l->n_active, sizeof(int), 1, fp);
399 s += fwrite(l->weights, sizeof(double), l->n_weights, fp);
400 s += fwrite(l->weight_active, sizeof(bool), l->n_weights, fp);
401 s += fwrite(l->biases, sizeof(double), l->n_biases, fp);
402 s += fwrite(l->bias_updates, sizeof(double), l->n_biases, fp);
403 s += fwrite(l->weight_updates, sizeof(double), l->n_weights, fp);
404 s += fwrite(l->mu, sizeof(double), N_MU, fp);
405 return s;
406}
407
414size_t
416{
417 size_t s = 0;
418 s += fread(&l->n_inputs, sizeof(int), 1, fp);
419 s += fread(&l->n_outputs, sizeof(int), 1, fp);
420 s += fread(&l->n_biases, sizeof(int), 1, fp);
421 s += fread(&l->max_outputs, sizeof(int), 1, fp);
422 s += fread(&l->n_weights, sizeof(int), 1, fp);
423 s += fread(&l->options, sizeof(uint32_t), 1, fp);
424 s += fread(&l->function, sizeof(int), 1, fp);
425 s += fread(&l->max_neuron_grow, sizeof(int), 1, fp);
426 s += fread(&l->eta, sizeof(double), 1, fp);
427 s += fread(&l->eta_max, sizeof(double), 1, fp);
428 s += fread(&l->eta_min, sizeof(double), 1, fp);
429 s += fread(&l->momentum, sizeof(double), 1, fp);
430 s += fread(&l->decay, sizeof(double), 1, fp);
431 s += fread(&l->n_active, sizeof(int), 1, fp);
432 l->out_w = l->n_outputs;
433 l->out_c = 1;
434 l->out_h = 1;
436 s += fread(l->weights, sizeof(double), l->n_weights, fp);
437 s += fread(l->weight_active, sizeof(bool), l->n_weights, fp);
438 s += fread(l->biases, sizeof(double), l->n_biases, fp);
439 s += fread(l->bias_updates, sizeof(double), l->n_biases, fp);
440 s += fread(l->weight_updates, sizeof(double), l->n_weights, fp);
441 s += fread(l->mu, sizeof(double), N_MU, fp);
442 return s;
443}
void blas_scal(const int N, const double ALPHA, double *X, const int INCX)
Scales vector X by the scalar ALPHA and overwrites it with the result.
Definition blas.c:160
void blas_axpy(const int N, const double ALPHA, const double *X, const int INCX, double *Y, const int INCY)
Multiplies vector X by the scalar ALPHA and adds it to the vector Y.
Definition blas.c:138
void blas_gemm(const int TA, const int TB, const int M, const int N, const int K, const double ALPHA, const double *A, const int lda, const double *B, const int ldb, const double BETA, double *C, const int ldc)
Performs the matrix-matrix multiplication: .
Definition blas.c:108
Basic linear algebra functions.
const char * neural_activation_string(const int a)
Returns the name of a specified activation function.
void neural_gradient_array(const double *state, double *delta, const int n, const int a)
Applies a gradient function to a vector of neuron states.
void neural_activate_array(double *state, double *output, const int n, const int a)
Applies an activation function to a vector of neuron states.
Neural network activation functions.
bool layer_mutate_connectivity(struct Layer *l, const double mu_enable, const double mu_disable)
Mutates a layer's connectivity by zeroing weights.
void layer_defaults(struct Layer *l)
Initialises a layer to default values.
int layer_mutate_neurons(const struct Layer *l, const double mu)
Returns the number of neurons to add or remove from a layer.
bool layer_mutate_functions(struct Layer *l, const double mu)
Mutates a layer's activation function by random selection.
void layer_weight_clamp(const struct Layer *l)
Clamps a layer's weights and biases in range [WEIGHT_MIN, WEIGHT_MAX].
void layer_guard_outputs(const struct Layer *l)
Check number of outputs is within bounds.
void layer_weight_rand(struct Layer *l)
Randomises a layer's weights and biases.
void layer_add_neurons(struct Layer *l, const int N)
Adds N neurons to a layer. Negative N removes neurons.
void layer_ensure_input_represention(struct Layer *l)
Ensures that each neuron is connected to at least one input and each input is connected to at least o...
char * layer_weight_json(const struct Layer *l, const bool return_weights)
Returns a json formatted string representation of a layer's weights.
void layer_calc_n_active(struct Layer *l)
Recalculates the number of active connections within a layer.
void layer_init_eta(struct Layer *l)
Initialises a layer's gradient descent rate.
bool layer_mutate_eta(struct Layer *l, const double mu)
Mutates the gradient descent rate of a neural layer.
bool layer_mutate_weights(struct Layer *l, const double mu)
Mutates a layer's weights and biases by adding random numbers from a Gaussian normal distribution wit...
void layer_guard_weights(const struct Layer *l)
Check number of weights is within bounds.
#define LAYER_EVOLVE_ETA
Layer may evolve rate of gradient descent.
#define LAYER_EVOLVE_FUNCTIONS
Layer may evolve functions.
#define WEIGHT_SD_INIT
Std dev of Gaussian for weight initialisation.
#define LAYER_EVOLVE_WEIGHTS
Layer may evolve weights.
#define LAYER_EVOLVE_NEURONS
Layer may evolve neurons.
#define LAYER_EVOLVE_CONNECT
Layer may evolve connectivity.
#define WEIGHT_SD
Std dev of Gaussian for weight resizing.
#define LAYER_SGD_WEIGHTS
Layer may perform gradient descent.
static void layer_print(const struct Layer *l, const bool print_weights)
Prints the layer.
#define CONNECTED
Layer type connected.
#define N_WEIGHTS_MAX
Maximum number of weights per layer.
uint32_t layer_args_opt(const struct ArgsLayer *args)
Returns a bitstring representing the permissions granted by a layer.
size_t neural_layer_connected_save(const struct Layer *l, FILE *fp)
Writes a connected layer to a file.
void neural_layer_connected_print(const struct Layer *l, const bool print_weights)
Prints a connected layer.
void neural_layer_connected_rand(struct Layer *l)
Randomises a connected layer weights.
void neural_layer_connected_resize(struct Layer *l, const struct Layer *prev)
Resizes a connected layer if the previous layer has changed size.
static void malloc_layer_arrays(struct Layer *l)
Allocate memory used by a connected layer.
#define N_MU
Number of mutation rates applied to a connected layer.
char * neural_layer_connected_json_export(const struct Layer *l, const bool return_weights)
Returns a json formatted string representation of a connected layer.
static const int MU_TYPE[(6)]
Self-adaptation method for mutating a connected layer.
size_t neural_layer_connected_load(struct Layer *l, FILE *fp)
Reads a connected layer from a file.
void neural_layer_connected_backward(const struct Layer *l, const struct Net *net, const double *input, double *delta)
Backward propagates a connected layer.
bool neural_layer_connected_mutate(struct Layer *l)
Mutates a connected layer.
void neural_layer_connected_forward(const struct Layer *l, const struct Net *net, const double *input)
Forward propagates a connected layer.
double * neural_layer_connected_output(const struct Layer *l)
Returns the output from a connected layer.
void neural_layer_connected_init(struct Layer *l, const struct ArgsLayer *args)
Initialises a fully-connected layer.
struct Layer * neural_layer_connected_copy(const struct Layer *src)
Initialises and creates a copy of one connected layer from another.
void neural_layer_connected_update(const struct Layer *l)
Updates the weights and biases of a connected layer.
void neural_layer_connected_free(const struct Layer *l)
Free memory used by a connected layer.
An implementation of a fully-connected layer of perceptrons.
void sam_init(double *mu, const int N, const int *type)
Initialises self-adaptive mutation rates.
Definition sam.c:43
void sam_adapt(double *mu, const int N, const int *type)
Self-adapts mutation rates.
Definition sam.c:68
Self-adaptive mutation functions.
#define SAM_RATE_SELECT
Ten normally distributed rates.
Definition sam.h:29
Parameters for initialising a neural network layer.
int n_init
Initial number of units / neurons / filters.
double decay
Weight decay for gradient descent.
double momentum
Momentum for gradient descent.
int function
Activation function.
int max_neuron_grow
Maximum number neurons to add per mutation event.
double eta
Gradient descent rate.
double eta_min
Current gradient descent rate.
int n_max
Maximum number of units / neurons.
int n_inputs
Number of inputs.
Neural network layer data structure.
double * output
Current neuron outputs (after activation function)
double decay
Weight decay for gradient descent.
double * state
Current neuron states (before activation function)
int max_neuron_grow
Maximum number neurons to add per mutation event.
int n_inputs
Number of layer inputs.
int n_biases
Number of layer biases.
bool * weight_active
Whether each connection is present in the layer.
double * weights
Weights for calculating neuron states.
double * weight_updates
Updates to weights.
double * mu
Mutation rates.
int function
Layer activation function.
double * c
LSTM.
struct LayerVtbl const * layer_vptr
Functions acting on layers.
int max_outputs
Maximum number of neurons in the layer.
int n_weights
Number of layer weights.
double * bias_updates
Updates to biases.
double eta_max
Maximum gradient descent rate.
double * i
LSTM.
int n_outputs
Number of layer outputs.
double * biases
Biases for calculating neuron states.
int n_active
Number of active weights / connections.
int out_w
Pool, Conv, and Upsample.
int type
Layer type: CONNECTED, DROPOUT, etc.
int out_c
Pool, Conv, and Upsample.
double * delta
Delta for updating weights.
uint32_t options
Bitwise layer options permitting evolution, SGD, etc.
int out_h
Pool, Conv, and Upsample.
double eta_min
Minimum gradient descent rate.
double eta
Gradient descent rate.
double momentum
Momentum for gradient descent.
Neural network data structure.
Definition neural.h:48
double rand_normal(const double mu, const double sigma)
Returns a random Gaussian with specified mean and standard deviation.
Definition utils.c:87
Utility functions for random number handling, etc.