XCSF 1.4.8
XCSF learning classifier system
Loading...
Searching...
No Matches
neural_layer_recurrent.c
Go to the documentation of this file.
1/*
2 * This program is free software: you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation, either version 3 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program. If not, see <http://www.gnu.org/licenses/>.
14 */
15
26#include "blas.h"
27#include "neural_activations.h"
29#include "sam.h"
30#include "utils.h"
31
32#define N_MU (6)
33
45
50static void
52{
54 l->state = calloc(l->n_outputs, sizeof(double));
55 l->prev_state = calloc(l->n_outputs, sizeof(double));
56 l->mu = malloc(sizeof(double) * N_MU);
57}
58
63static void
65{
67 l->state = realloc(l->state, l->n_outputs * sizeof(double));
68 l->prev_state = realloc(l->prev_state, l->n_outputs * sizeof(double));
69}
70
75static void
76free_layer_arrays(const struct Layer *l)
77{
78 free(l->state);
79 free(l->prev_state);
80 free(l->mu);
81}
82
87static void
89{
90 l->input_layer = malloc(sizeof(struct Layer));
91 l->self_layer = malloc(sizeof(struct Layer));
92 l->output_layer = malloc(sizeof(struct Layer));
93}
94
99static void
105
110static void
116
121static void
127
133static bool
135{
136 if ((l->options & LAYER_EVOLVE_ETA) && layer_mutate_eta(l, l->mu[0])) {
137 l->input_layer->eta = l->eta;
138 l->self_layer->eta = l->eta;
139 l->output_layer->eta = l->eta;
140 return true;
141 }
142 return false;
143}
144
150static bool
152{
153 if (l->options & LAYER_EVOLVE_NEURONS) {
154 const int n = layer_mutate_neurons(l->self_layer, l->mu[1]);
155 if (n != 0) {
162 l->out_w = l->n_outputs;
163 l->out_h = 1;
164 l->out_c = 1;
165 l->output = l->output_layer->output;
166 l->delta = l->output_layer->delta;
171 return true;
172 }
173 }
174 return false;
175}
176
182static bool
184{
185 bool mod = false;
186 if (l->options & LAYER_EVOLVE_CONNECT) {
187 if (layer_mutate_connectivity(l->input_layer, l->mu[2], l->mu[3])) {
188 mod = true;
189 }
190 if (layer_mutate_connectivity(l->self_layer, l->mu[2], l->mu[3])) {
191 mod = true;
192 }
193 if (layer_mutate_connectivity(l->output_layer, l->mu[2], l->mu[3])) {
194 mod = true;
195 }
197 }
198 return mod;
199}
200
206static bool
208{
209 bool mod = false;
210 if (l->options & LAYER_EVOLVE_WEIGHTS) {
211 if (layer_mutate_weights(l->input_layer, l->mu[4])) {
212 mod = true;
213 }
214 if (layer_mutate_weights(l->self_layer, l->mu[4])) {
215 mod = true;
216 }
217 if (layer_mutate_weights(l->output_layer, l->mu[4])) {
218 mod = true;
219 }
220 }
221 return mod;
222}
223
229static bool
231{
233 layer_mutate_functions(l, l->mu[5])) {
235 return true;
236 }
237 return false;
238}
239
245void
246neural_layer_recurrent_init(struct Layer *l, const struct ArgsLayer *args)
247{
248 l->options = layer_args_opt(args);
249 l->function = args->function;
250 l->n_inputs = args->n_inputs;
251 l->n_outputs = args->n_init;
252 l->max_outputs = args->n_max;
253 l->out_w = l->n_outputs;
254 l->out_c = 1;
255 l->out_h = 1;
256 struct ArgsLayer *cargs = layer_args_copy(args);
257 cargs->type = CONNECTED; // recurrent layer is composed of 3 connected
258 cargs->function = LINEAR; // input layer and self layer are linear
259 l->input_layer = layer_init(cargs);
260 cargs->n_inputs = cargs->n_init; // n_init inputs to self and output layers
261 l->self_layer = layer_init(cargs);
262 cargs->function = args->function; // output activation
263 l->output_layer = layer_init(cargs);
264 free(cargs);
265 l->output = l->output_layer->output;
266 l->delta = l->output_layer->delta;
267 l->eta = l->input_layer->eta;
268 l->self_layer->eta = l->eta;
269 l->output_layer->eta = l->eta;
274 sam_init(l->mu, N_MU, MU_TYPE);
275}
276
282struct Layer *
284{
285 if (src->type != RECURRENT) {
286 printf("neural_layer_recurrent_copy(): incorrect source layer type\n");
287 exit(EXIT_FAILURE);
288 }
289 struct Layer *l = malloc(sizeof(struct Layer));
291 l->type = src->type;
292 l->layer_vptr = src->layer_vptr;
293 l->options = src->options;
294 l->function = src->function;
295 l->n_inputs = src->n_inputs;
296 l->n_outputs = src->n_outputs;
297 l->max_outputs = src->max_outputs;
298 l->out_w = src->out_w;
299 l->out_c = src->out_c;
300 l->out_h = src->out_h;
301 l->n_active = src->n_active;
302 l->eta = src->eta;
306 l->output = l->output_layer->output;
307 l->delta = l->output_layer->delta;
309 memcpy(l->mu, src->mu, sizeof(double) * N_MU);
310 memcpy(l->prev_state, src->prev_state, sizeof(double) * src->n_outputs);
311 return l;
312}
313
318void
320{
324 free(l->input_layer);
325 free(l->self_layer);
326 free(l->output_layer);
328}
329
334void
341
348void
349neural_layer_recurrent_forward(const struct Layer *l, const struct Net *net,
350 const double *input)
351{
352 memcpy(l->prev_state, l->state, sizeof(double) * l->n_outputs);
353 layer_forward(l->input_layer, net, input);
355 memcpy(l->state, l->input_layer->output, sizeof(double) * l->n_outputs);
356 blas_axpy(l->n_outputs, 1, l->self_layer->output, 1, l->state, 1);
357 layer_forward(l->output_layer, net, l->state);
358}
359
367void
368neural_layer_recurrent_backward(const struct Layer *l, const struct Net *net,
369 const double *input, double *delta)
370{
371 memset(l->input_layer->delta, 0, sizeof(double) * l->n_outputs);
372 memset(l->self_layer->delta, 0, sizeof(double) * l->n_outputs);
374 memcpy(l->input_layer->delta, l->self_layer->delta,
375 sizeof(double) * l->n_outputs);
376 layer_backward(l->self_layer, net, l->prev_state, 0);
377 layer_backward(l->input_layer, net, input, delta);
378}
379
384void
386{
387 if (l->options & LAYER_SGD_WEIGHTS && l->eta > 0) {
391 }
392}
393
399void
400neural_layer_recurrent_resize(struct Layer *l, const struct Layer *prev)
401{
402 layer_resize(l->input_layer, prev);
406}
407
413double *
415{
416 return l->output;
417}
418
424bool
426{
427 sam_adapt(l->mu, N_MU, MU_TYPE);
428 bool mod = false;
429 mod = mutate_eta(l) ? true : mod;
430 mod = mutate_neurons(l) ? true : mod;
431 mod = mutate_connectivity(l) ? true : mod;
432 mod = mutate_weights(l) ? true : mod;
433 mod = mutate_functions(l) ? true : mod;
434 return mod;
435}
436
442void
443neural_layer_recurrent_print(const struct Layer *l, const bool print_weights)
444{
445 char *json_str = neural_layer_recurrent_json_export(l, print_weights);
446 printf("%s\n", json_str);
447 free(json_str);
448}
449
457char *
459 const bool return_weights)
460{
461 cJSON *json = cJSON_CreateObject();
462 cJSON_AddStringToObject(json, "type", "recurrent");
463 cJSON_AddStringToObject(json, "activation",
465 cJSON_AddNumberToObject(json, "n_inputs", l->n_inputs);
466 cJSON_AddNumberToObject(json, "n_outputs", l->n_outputs);
467 cJSON_AddNumberToObject(json, "eta", l->eta);
468 cJSON *mutation = cJSON_CreateDoubleArray(l->mu, N_MU);
469 cJSON_AddItemToObject(json, "mutation", mutation);
470 char *weights_str = layer_weight_json(l->input_layer, return_weights);
471 cJSON *il = cJSON_Parse(weights_str);
472 free(weights_str);
473 cJSON_AddItemToObject(json, "input_layer", il);
474 weights_str = layer_weight_json(l->self_layer, return_weights);
475 cJSON *sl = cJSON_Parse(weights_str);
476 free(weights_str);
477 cJSON_AddItemToObject(json, "self_layer", sl);
478 weights_str = layer_weight_json(l->output_layer, return_weights);
479 cJSON *ol = cJSON_Parse(weights_str);
480 free(weights_str);
481 cJSON_AddItemToObject(json, "output_layer", ol);
482 char *string = cJSON_Print(json);
483 cJSON_Delete(json);
484 return string;
485}
486
493size_t
494neural_layer_recurrent_save(const struct Layer *l, FILE *fp)
495{
496 size_t s = 0;
497 s += fwrite(&l->n_inputs, sizeof(int), 1, fp);
498 s += fwrite(&l->n_outputs, sizeof(int), 1, fp);
499 s += fwrite(&l->max_outputs, sizeof(int), 1, fp);
500 s += fwrite(&l->options, sizeof(uint32_t), 1, fp);
501 s += fwrite(&l->function, sizeof(int), 1, fp);
502 s += fwrite(&l->eta, sizeof(double), 1, fp);
503 s += fwrite(&l->n_active, sizeof(int), 1, fp);
504 s += fwrite(l->mu, sizeof(double), N_MU, fp);
505 s += fwrite(l->state, sizeof(double), l->n_outputs, fp);
506 s += fwrite(l->prev_state, sizeof(double), l->n_outputs, fp);
507 s += layer_save(l->input_layer, fp);
508 s += layer_save(l->self_layer, fp);
509 s += layer_save(l->output_layer, fp);
510 return s;
511}
512
519size_t
521{
522 size_t s = 0;
523 s += fread(&l->n_inputs, sizeof(int), 1, fp);
524 s += fread(&l->n_outputs, sizeof(int), 1, fp);
525 s += fread(&l->max_outputs, sizeof(int), 1, fp);
526 s += fread(&l->options, sizeof(uint32_t), 1, fp);
527 s += fread(&l->function, sizeof(int), 1, fp);
528 s += fread(&l->eta, sizeof(double), 1, fp);
529 s += fread(&l->n_active, sizeof(int), 1, fp);
530 l->out_w = l->n_outputs;
531 l->out_c = 1;
532 l->out_h = 1;
534 s += fread(l->mu, sizeof(double), N_MU, fp);
535 s += fread(l->state, sizeof(double), l->n_outputs, fp);
536 s += fread(l->prev_state, sizeof(double), l->n_outputs, fp);
537 malloc_layers(l);
538 s += layer_load(l->input_layer, fp);
539 s += layer_load(l->self_layer, fp);
540 s += layer_load(l->output_layer, fp);
541 return s;
542}
void blas_axpy(const int N, const double ALPHA, const double *X, const int INCX, double *Y, const int INCY)
Multiplies vector X by the scalar ALPHA and adds it to the vector Y.
Definition blas.c:138
Basic linear algebra functions.
const char * neural_activation_string(const int a)
Returns the name of a specified activation function.
Neural network activation functions.
#define LINEAR
Linear [-inf,inf].
bool layer_mutate_connectivity(struct Layer *l, const double mu_enable, const double mu_disable)
Mutates a layer's connectivity by zeroing weights.
void layer_defaults(struct Layer *l)
Initialises a layer to default values.
int layer_mutate_neurons(const struct Layer *l, const double mu)
Returns the number of neurons to add or remove from a layer.
bool layer_mutate_functions(struct Layer *l, const double mu)
Mutates a layer's activation function by random selection.
void layer_guard_outputs(const struct Layer *l)
Check number of outputs is within bounds.
void layer_add_neurons(struct Layer *l, const int N)
Adds N neurons to a layer. Negative N removes neurons.
char * layer_weight_json(const struct Layer *l, const bool return_weights)
Returns a json formatted string representation of a layer's weights.
bool layer_mutate_eta(struct Layer *l, const double mu)
Mutates the gradient descent rate of a neural layer.
bool layer_mutate_weights(struct Layer *l, const double mu)
Mutates a layer's weights and biases by adding random numbers from a Gaussian normal distribution wit...
static void layer_rand(struct Layer *l)
Randomises a layer.
static void layer_resize(struct Layer *l, const struct Layer *prev)
Resizes a layer using the previous layer's inputs.
#define LAYER_EVOLVE_ETA
Layer may evolve rate of gradient descent.
#define LAYER_EVOLVE_FUNCTIONS
Layer may evolve functions.
static size_t layer_save(const struct Layer *l, FILE *fp)
Writes the layer to a file.
#define LAYER_EVOLVE_WEIGHTS
Layer may evolve weights.
static void layer_free(const struct Layer *l)
Frees the memory used by the layer.
static void layer_backward(const struct Layer *l, const struct Net *net, const double *input, double *delta)
Backward propagates the error through a layer.
static size_t layer_load(struct Layer *l, FILE *fp)
Reads the layer from a file.
#define LAYER_EVOLVE_NEURONS
Layer may evolve neurons.
#define LAYER_EVOLVE_CONNECT
Layer may evolve connectivity.
static void layer_update(const struct Layer *l)
Updates the weights and biases of a layer.
#define RECURRENT
Layer type recurrent.
static struct Layer * layer_init(const struct ArgsLayer *args)
Creates and initialises a new layer.
static void layer_forward(const struct Layer *l, const struct Net *net, const double *input)
Forward propagates an input through the layer.
static struct Layer * layer_copy(const struct Layer *src)
Creates and returns a copy of a specified layer.
#define LAYER_SGD_WEIGHTS
Layer may perform gradient descent.
#define CONNECTED
Layer type connected.
uint32_t layer_args_opt(const struct ArgsLayer *args)
Returns a bitstring representing the permissions granted by a layer.
struct ArgsLayer * layer_args_copy(const struct ArgsLayer *src)
Creates and returns a copy of specified layer parameters.
An implementation of a fully-connected layer of perceptrons.
size_t neural_layer_recurrent_save(const struct Layer *l, FILE *fp)
Writes a recurrent layer to a file.
size_t neural_layer_recurrent_load(struct Layer *l, FILE *fp)
Reads a recurrent layer from a file.
void neural_layer_recurrent_update(const struct Layer *l)
Updates the weights and biases of a recurrent layer.
void neural_layer_recurrent_resize(struct Layer *l, const struct Layer *prev)
Resizes a recurrent layer if the previous layer has changed size.
static bool mutate_eta(struct Layer *l)
Mutates the gradient descent rate used to update a recurrent layer.
struct Layer * neural_layer_recurrent_copy(const struct Layer *src)
Initialises and creates a copy of one recurrent layer from another.
bool neural_layer_recurrent_mutate(struct Layer *l)
Mutates a recurrent layer.
void neural_layer_recurrent_rand(struct Layer *l)
Randomises a recurrent layer weights.
static void free_layer_arrays(const struct Layer *l)
Free memory used by a recurrent layer.
static void malloc_layer_arrays(struct Layer *l)
Allocate memory used by a recurrent layer.
void neural_layer_recurrent_init(struct Layer *l, const struct ArgsLayer *args)
Initialises a recurrent layer.
static void set_layer_n_weights(struct Layer *l)
Sets the total number of weights in a recurrent layer.
static void realloc_layer_arrays(struct Layer *l)
Resize memory used by a recurrent layer.
char * neural_layer_recurrent_json_export(const struct Layer *l, const bool return_weights)
Returns a json formatted string representation of a recurrent layer.
#define N_MU
Number of mutation rates applied to a recurrent layer.
static bool mutate_neurons(struct Layer *l)
Mutates the number of neurons in a recurrent layer.
static bool mutate_functions(struct Layer *l)
Mutates the activation function of a recurrent layer.
static void set_layer_n_active(struct Layer *l)
Sets the number of active (non-zero) weights in a recurrent layer.
static const int MU_TYPE[(6)]
Self-adaptation method for mutating a recurrent layer.
static bool mutate_weights(struct Layer *l)
Mutates the magnitude of weights and biases in a recurrent layer.
static void set_layer_n_biases(struct Layer *l)
Sets the total number of biases in a recurrent layer.
static void malloc_layers(struct Layer *l)
Allocate memory for the sub-layers.
double * neural_layer_recurrent_output(const struct Layer *l)
Returns the output from a recurrent layer.
void neural_layer_recurrent_free(const struct Layer *l)
Free memory used by a recurrent layer.
void neural_layer_recurrent_forward(const struct Layer *l, const struct Net *net, const double *input)
Forward propagates a recurrent layer.
static bool mutate_connectivity(struct Layer *l)
Mutates the number of active weights in a recurrent layer.
void neural_layer_recurrent_backward(const struct Layer *l, const struct Net *net, const double *input, double *delta)
Backward propagates a recurrent layer.
void neural_layer_recurrent_print(const struct Layer *l, const bool print_weights)
Prints a recurrent layer.
An implementation of a recurrent layer of perceptrons.
void sam_init(double *mu, const int N, const int *type)
Initialises self-adaptive mutation rates.
Definition sam.c:43
void sam_adapt(double *mu, const int N, const int *type)
Self-adapts mutation rates.
Definition sam.c:68
Self-adaptive mutation functions.
#define SAM_RATE_SELECT
Ten normally distributed rates.
Definition sam.h:29
Parameters for initialising a neural network layer.
int n_init
Initial number of units / neurons / filters.
int function
Activation function.
int n_max
Maximum number of units / neurons.
int n_inputs
Number of inputs.
int type
Layer type: CONNECTED, DROPOUT, etc.
Neural network layer data structure.
double * output
Current neuron outputs (after activation function)
struct Layer * input_layer
Recursive layer input.
double * state
Current neuron states (before activation function)
int n_inputs
Number of layer inputs.
int n_biases
Number of layer biases.
double * mu
Mutation rates.
int function
Layer activation function.
struct LayerVtbl const * layer_vptr
Functions acting on layers.
int max_outputs
Maximum number of neurons in the layer.
int n_weights
Number of layer weights.
struct Layer * output_layer
Recursive layer output.
int n_outputs
Number of layer outputs.
struct Layer * self_layer
Recursive layer self.
int n_active
Number of active weights / connections.
double * prev_state
Previous state for recursive layers.
int out_w
Pool, Conv, and Upsample.
int type
Layer type: CONNECTED, DROPOUT, etc.
int out_c
Pool, Conv, and Upsample.
double * delta
Delta for updating weights.
uint32_t options
Bitwise layer options permitting evolution, SGD, etc.
int out_h
Pool, Conv, and Upsample.
double eta
Gradient descent rate.
Neural network data structure.
Definition neural.h:48
Utility functions for random number handling, etc.