XCSF  1.4.7
XCSF learning classifier system
File List
Here is a list of all files with brief descriptions:
 __init__.py
 utils/__init__.py
 act_integer.cInteger action functions
 act_integer.hInteger action functions
 act_neural.cNeural network action functions
 act_neural.hNeural network action functions
 action.cInterface for classifier actions
 action.hInterface for classifier actions
 blas.cBasic linear algebra functions
 blas.hBasic linear algebra functions
 cl.cFunctions operating on classifiers
 cl.hFunctions operating on classifiers
 clset.cFunctions operating on sets of classifiers
 clset.hFunctions operating on sets of classifiers
 clset_neural.cFunctions operating on sets of neural classifiers
 clset_neural.hFunctions operating on sets of neural classifiers
 cond_dgp.cDynamical GP graph condition functions
 cond_dgp.hDynamical GP graph condition functions
 cond_dummy.cAlways-matching dummy condition functions
 cond_dummy.hAlways-matching dummy condition functions
 cond_ellipsoid.cHyperellipsoid condition functions
 cond_ellipsoid.hHyperellipsoid condition functions
 cond_gp.cTree GP condition functions
 cond_gp.hTree GP condition functions
 cond_neural.cMulti-layer perceptron neural network condition functions
 cond_neural.hMulti-layer perceptron neural network condition functions
 cond_rectangle.cHyperrectangle condition functions
 cond_rectangle.hHyperrectangle condition functions
 cond_ternary.cTernary condition functions
 cond_ternary.hTernary condition functions
 condition.cInterface for classifier conditions
 condition.hInterface for classifier conditions
 config.cConfiguration file (JSON) handling functions
 config.hConfiguration file handling functions
 dgp.cAn implementation of dynamical GP graphs with fuzzy activations
 dgp.hAn implementation of dynamical GP graphs with fuzzy activations
 ea.cEvolutionary algorithm functions
 ea.hEvolutionary algorithm functions
 env.cBuilt-in problem environment interface
 env.hBuilt-in problem environment interface
 env_csv.cCSV input file handling functions
 env_csv.hCSV input file handling functions
 env_maze.cThe discrete maze problem environment module
 env_maze.hThe discrete maze problem environment module
 env_mux.cThe real multiplexer problem environment
 env_mux.hThe real multiplexer problem environment
 gp.cAn implementation of GP trees based upon TinyGP
 gp.hAn implementation of GP trees based upon TinyGP
 image.cImage handling functions
 image.hImage handling functions
 loss.cLoss functions for calculating prediction error
 loss.hLoss functions for calculating prediction error
 main.cMain function for stand-alone binary execution
 neural.cAn implementation of a multi-layer perceptron neural network
 neural.hAn implementation of a multi-layer perceptron neural network
 neural_activations.cNeural network activation functions
 neural_activations.hNeural network activation functions
 neural_layer.cInterface for neural network layers
 neural_layer.hInterface for neural network layers
 neural_layer_args.cFunctions operating on neural network arguments/constants
 neural_layer_args.hFunctions operating on neural network arguments/constants
 neural_layer_avgpool.cAn implementation of an average pooling layer
 neural_layer_avgpool.hAn implementation of an average pooling layer
 neural_layer_connected.cAn implementation of a fully-connected layer of perceptrons
 neural_layer_connected.hAn implementation of a fully-connected layer of perceptrons
 neural_layer_convolutional.cAn implementation of a 2D convolutional layer
 neural_layer_convolutional.hAn implementation of a 2D convolutional layer
 neural_layer_dropout.cAn implementation of a dropout layer
 neural_layer_dropout.hAn implementation of a dropout layer
 neural_layer_lstm.cAn implementation of a long short-term memory layer
 neural_layer_lstm.hAn implementation of a long short-term memory layer
 neural_layer_maxpool.cAn implementation of a 2D maxpooling layer
 neural_layer_maxpool.hAn implementation of a 2D maxpooling layer
 neural_layer_noise.cAn implementation of a Gaussian noise adding layer
 neural_layer_noise.hAn implementation of a Gaussian noise adding layer
 neural_layer_recurrent.cAn implementation of a recurrent layer of perceptrons
 neural_layer_recurrent.hAn implementation of a recurrent layer of perceptrons
 neural_layer_softmax.cAn implementation of a softmax layer
 neural_layer_softmax.hAn implementation of a softmax layer
 neural_layer_upsample.cAn implementation of a 2D upsampling layer
 neural_layer_upsample.hAn implementation of a 2D upsampling layer
 pa.cPrediction array functions
 pa.hPrediction array functions
 param.cFunctions for setting and printing parameters
 param.hFunctions for setting and printing parameters
 perf.cSystem performance printing
 perf.hSystem performance printing
 pred_constant.cPiece-wise constant prediction functions
 pred_constant.hPiece-wise constant prediction functions
 pred_neural.cMulti-layer perceptron neural network prediction functions
 pred_neural.hMulti-layer perceptron neural network prediction functions
 pred_nlms.cNormalised least mean squares prediction functions
 pred_nlms.hNormalised least mean squares prediction functions
 pred_rls.cRecursive least mean squares prediction functions
 pred_rls.hRecursive least mean squares prediction functions
 prediction.cInterface for classifier predictions
 prediction.hInterface for classifier predictions
 pybind_callback.hInterface for callbacks
 pybind_callback_checkpoint.hCheckpoint callback for Python library
 pybind_callback_earlystop.hEarly stopping callback for Python library
 pybind_utils.hUtilities for Python library
 pybind_wrapper.cppPython library wrapper functions
 rule_dgp.cDynamical GP graph rule (condition + action) functions
 rule_dgp.hDynamical GP graph rule (condition + action) functions
 rule_neural.cNeural network rule (condition + action) functions
 rule_neural.hNeural network rule (condition + action) functions
 sam.cSelf-adaptive mutation functions
 sam.hSelf-adaptive mutation functions
 utils.cUtility functions for random number handling, etc
 utils.hUtility functions for random number handling, etc
 viz.pyClasses for visualising classifier knowledge representations
 xcs_rl.cReinforcement learning functions
 xcs_rl.hReinforcement learning functions
 xcs_supervised.cSupervised regression learning functions
 xcs_supervised.hSupervised regression learning functions
 xcsf.cSystem-level functions for initialising, saving, loading, etc
 xcsf.hXCSF data structures