|
XCSF 1.4.8
XCSF learning classifier system
|
| ► xcsf | |
| ► utils | |
| __init__.py | |
| viz.py | Classes for visualising classifier knowledge representations |
| __init__.py | |
| act_integer.c | Integer action functions |
| act_integer.h | Integer action functions |
| act_neural.c | Neural network action functions |
| act_neural.h | Neural network action functions |
| action.c | Interface for classifier actions |
| action.h | Interface for classifier actions |
| blas.c | Basic linear algebra functions |
| blas.h | Basic linear algebra functions |
| cl.c | Functions operating on classifiers |
| cl.h | Functions operating on classifiers |
| clset.c | Functions operating on sets of classifiers |
| clset.h | Functions operating on sets of classifiers |
| clset_neural.c | Functions operating on sets of neural classifiers |
| clset_neural.h | Functions operating on sets of neural classifiers |
| cond_dgp.c | Dynamical GP graph condition functions |
| cond_dgp.h | Dynamical GP graph condition functions |
| cond_dummy.c | Always-matching dummy condition functions |
| cond_dummy.h | Always-matching dummy condition functions |
| cond_ellipsoid.c | Hyperellipsoid condition functions |
| cond_ellipsoid.h | Hyperellipsoid condition functions |
| cond_gp.c | Tree GP condition functions |
| cond_gp.h | Tree GP condition functions |
| cond_neural.c | Multi-layer perceptron neural network condition functions |
| cond_neural.h | Multi-layer perceptron neural network condition functions |
| cond_rectangle.c | Hyperrectangle condition functions |
| cond_rectangle.h | Hyperrectangle condition functions |
| cond_ternary.c | Ternary condition functions |
| cond_ternary.h | Ternary condition functions |
| condition.c | Interface for classifier conditions |
| condition.h | Interface for classifier conditions |
| config.c | Configuration file (JSON) handling functions |
| config.h | Configuration file handling functions |
| dgp.c | An implementation of dynamical GP graphs with fuzzy activations |
| dgp.h | An implementation of dynamical GP graphs with fuzzy activations |
| ea.c | Evolutionary algorithm functions |
| ea.h | Evolutionary algorithm functions |
| env.c | Built-in problem environment interface |
| env.h | Built-in problem environment interface |
| env_csv.c | CSV input file handling functions |
| env_csv.h | CSV input file handling functions |
| env_maze.c | The discrete maze problem environment module |
| env_maze.h | The discrete maze problem environment module |
| env_mux.c | The real multiplexer problem environment |
| env_mux.h | The real multiplexer problem environment |
| gp.c | An implementation of GP trees based upon TinyGP |
| gp.h | An implementation of GP trees based upon TinyGP |
| image.c | Image handling functions |
| image.h | Image handling functions |
| loss.c | Loss functions for calculating prediction error |
| loss.h | Loss functions for calculating prediction error |
| main.c | Main function for stand-alone binary execution |
| neural.c | An implementation of a multi-layer perceptron neural network |
| neural.h | An implementation of a multi-layer perceptron neural network |
| neural_activations.c | Neural network activation functions |
| neural_activations.h | Neural network activation functions |
| neural_layer.c | Interface for neural network layers |
| neural_layer.h | Interface for neural network layers |
| neural_layer_args.c | Functions operating on neural network arguments/constants |
| neural_layer_args.h | Functions operating on neural network arguments/constants |
| neural_layer_avgpool.c | An implementation of an average pooling layer |
| neural_layer_avgpool.h | An implementation of an average pooling layer |
| neural_layer_connected.c | An implementation of a fully-connected layer of perceptrons |
| neural_layer_connected.h | An implementation of a fully-connected layer of perceptrons |
| neural_layer_convolutional.c | An implementation of a 2D convolutional layer |
| neural_layer_convolutional.h | An implementation of a 2D convolutional layer |
| neural_layer_dropout.c | An implementation of a dropout layer |
| neural_layer_dropout.h | An implementation of a dropout layer |
| neural_layer_lstm.c | An implementation of a long short-term memory layer |
| neural_layer_lstm.h | An implementation of a long short-term memory layer |
| neural_layer_maxpool.c | An implementation of a 2D maxpooling layer |
| neural_layer_maxpool.h | An implementation of a 2D maxpooling layer |
| neural_layer_noise.c | An implementation of a Gaussian noise adding layer |
| neural_layer_noise.h | An implementation of a Gaussian noise adding layer |
| neural_layer_recurrent.c | An implementation of a recurrent layer of perceptrons |
| neural_layer_recurrent.h | An implementation of a recurrent layer of perceptrons |
| neural_layer_softmax.c | An implementation of a softmax layer |
| neural_layer_softmax.h | An implementation of a softmax layer |
| neural_layer_upsample.c | An implementation of a 2D upsampling layer |
| neural_layer_upsample.h | An implementation of a 2D upsampling layer |
| pa.c | Prediction array functions |
| pa.h | Prediction array functions |
| param.c | Functions for setting and printing parameters |
| param.h | Functions for setting and printing parameters |
| perf.c | System performance printing |
| perf.h | System performance printing |
| pred_constant.c | Piece-wise constant prediction functions |
| pred_constant.h | Piece-wise constant prediction functions |
| pred_neural.c | Multi-layer perceptron neural network prediction functions |
| pred_neural.h | Multi-layer perceptron neural network prediction functions |
| pred_nlms.c | Normalised least mean squares prediction functions |
| pred_nlms.h | Normalised least mean squares prediction functions |
| pred_rls.c | Recursive least mean squares prediction functions |
| pred_rls.h | Recursive least mean squares prediction functions |
| prediction.c | Interface for classifier predictions |
| prediction.h | Interface for classifier predictions |
| pybind_callback.h | Interface for callbacks |
| pybind_callback_checkpoint.h | Checkpoint callback for Python library |
| pybind_callback_earlystop.h | Early stopping callback for Python library |
| pybind_utils.h | Utilities for Python library |
| pybind_wrapper.cpp | Python library wrapper functions |
| rule_dgp.c | Dynamical GP graph rule (condition + action) functions |
| rule_dgp.h | Dynamical GP graph rule (condition + action) functions |
| rule_neural.c | Neural network rule (condition + action) functions |
| rule_neural.h | Neural network rule (condition + action) functions |
| sam.c | Self-adaptive mutation functions |
| sam.h | Self-adaptive mutation functions |
| utils.c | Utility functions for random number handling, etc |
| utils.h | Utility functions for random number handling, etc |
| xcs_rl.c | Reinforcement learning functions |
| xcs_rl.h | Reinforcement learning functions |
| xcs_supervised.c | Supervised regression learning functions |
| xcs_supervised.h | Supervised regression learning functions |
| xcsf.c | System-level functions for initialising, saving, loading, etc |
| xcsf.h | XCSF data structures |